A study of the effect of in-line and perpendicular magnetic fields on beam characteristics of electron guns in medical linear accelerators.

نویسندگان

  • Dragoş E Constantin
  • Rebecca Fahrig
  • Paul J Keall
چکیده

PURPOSE Using magnetic resonance imaging (MRI) for real-time guidance during radiotherapy is an active area of research and development. One aspect of the problem is the influence of the MRI scanner, modeled here as an external magnetic field, on the medical linear accelerator (linac) components. The present work characterizes the behavior of two medical linac electron guns with external magnetic fields for in-line and perpendicular orientations of the linac with respect to the MRI scanner. METHODS Two electron guns, Litton L-2087 and Varian VTC6364, are considered as representative models for this study. Emphasis was placed on the in-line design approach in which case the MRI scanner and the linac axes of symmetry coincide and assumes no magnetic shielding of the linac. For the in-line case, the magnetic field from a 0.5 T open MRI (GE Signa SP) magnet with a 60 cm gap between its poles was computed and used in full three dimensional (3D) space charge simulations, whereas for the perpendicular case the magnetic field was constant. RESULTS For the in-line configuration, it is shown that the electron beam is not deflected from the axis of symmetry of the gun and the primary beam current does not vanish even at very high values of the magnetic field, e.g., 0.16 T. As the field strength increases, the primary beam current has an initial plateau of constant value after which its value decreases to a minimum corresponding to a field strength of approximately 0.06 T. After the minimum is reached, the current starts to increase slowly. For the case when the beam current computation is performed at the beam waist position the initial plateau ends at 0.016 T for Litton L-2087 and at 0.012 T for Varian VTC6364. The minimum value of the primary beam current is 27.5% of the initial value for Litton L-2087 and 22.9% of the initial value for Varian VTC6364. The minimum current is reached at 0.06 and 0.062 T for Litton L-2087 and Varian VTC6364, respectively. At 0.16 T the beam current increases to 40.2 and 31.4% from the original value of the current for Litton L-2087 and Varian VTC6364, respectively. In contrast, for the case when the electron gun is perpendicular to the magnetic field, the electron beam is deflected from the axis of symmetry even at small values of the magnetic field. As the strength of the magnetic field increases, so does the beam deflection, leading to a sharp decrease of the primary beam current which vanishes at about 0.007 T for Litton L-2087 and at 0.006 T for Varian VTC6364, respectively. At zero external field, the beam rms emittance computed at beam waist is 1.54 and 1.29n-mm-mrad for Litton L-2087 and Varian VTC6364, respectively. For the inline configuration, there are two particular values of the external field where the beam rms emittance reaches a minimum. Litton L-2087 rms emittance reaches a minimum of 0.72n and 2.01 n-mm-mrad at 0.026 and 0.132 T, respectively. Varian VTC6364 rms emittance reaches a minimum of 0.34n and 0.35n-mm-mrad at 0.028 and 0.14 T, respectively. Beam radius dependence on the external field is shown for the in-line configuration for both electron guns. CONCLUSIONS 3D space charge simulation of two electron guns, Litton L-2087 and Varian VTC6364, were performed for in-line and perpendicular external magnetic fields. A consistent behavior of Pierce guns in external magnetic fields was proven. For the in-line configuration, the primary beam current does not vanish but a large reduction of beam current (up to 77.1%) is observed at higher field strengths; the beam directionality remains unchanged. It was shown that for a perpendicular configuration the current vanishes due to beam bending under the action of the Lorentz force. For in-line configuration it was determined that the rms beam emittance reaches two minima for relatively high values of the external magnetic field.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduction of photon contamination in electron therapy of cancer with magnetic fields

Introduction: Photon contamination is a restriction on treatment with electron that increase dose to healthy tissue below the tumor. The aim of this study is to reduce the photon contamination using a magnet system. Materials and Methods: A mini-applicator equipped with two neodymium boron permanent magnets was designed which make it possible to adjust the d...

متن کامل

Physical characteristics of electron beam from conventional and beam shaper IOERT applicator: A comparison study

Introduction: Intraoperative electron radiation therapy (IOERT) is one of the cancer treatment techniques that delivers high doses to tumor bed during surgery. IOERT can be performed by either conventional LINACs or dedicated IORT accelerators such as LIAC (Light Intraoperative Accelerator). Two types of applicators can be used with LIAC dedicated accelerator including conventi...

متن کامل

Effective Source-Surface Distance in Various Field Sizes and Electron Beam Energies and its Effect on Cutout Factor in a Elekta Precise Linear Accelerator

Introduction: In electron beam treatment, because of the non-point electron beam source, inverse-square law cannot be applied for dosimetry in different treatment intervals. Therefore, providing source-surface distance (SSD) charts in all clinics is of paramount importance. This study aimed to determine the effective SSD for various electron beam energies and field sizes and to...

متن کامل

The dosimetry assessment of Varian Linear Accelerators of 6, 15 and 20 MV by Monte Carlo Method

 Introduction: Monte Carlo method is often applied in radiation therapy as utilized in all the branches of science. An important requirement for successful radiotherapy is carefully examine the dose distribution specifications and decrease the difference between these features with experience to an acceptable level. In this study, the characteristics of 6, 15 and 20 MeV incident x-rays are prov...

متن کامل

Generating a Homogeneous Dose Distribution in the Junction Region between Two Adjacent Fields in Electron Beam Therapy

Introduction: Treatment with megavoltage electron beams is ideal for irradiating superficial tumors because of their limited range in tissues. However, for electron treatment of extended areas, such as the chest wall, two or more adjacent fields can be used. Abutment of these fields may lead to significant dose in homogeneities in the junction region. The aim of this study is to offer a new met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Medical physics

دوره 38 7  شماره 

صفحات  -

تاریخ انتشار 2011